skip to main content


Search for: All records

Creators/Authors contains: "Shelton, Spencer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plant polyphenols, such as the African potato (Hypoxis hemerocallidea)-derived bis-catechol rooperol, can display promising anticancer activity yet suffer from rapid metabolism. Embarking upon a program to systematically examine potentially more metabolically stable replacements for the catechol rings in rooperol, we report here a general, scalable synthesis of rooperol and analogues that builds on our previous synthetic approach incorporating a key Pd-catalyzed decarboxylative coupling strategy. Using this approach, we have prepared and evaluated the cancer cell cytotoxicity of rooperol and a series of analogues. While none of the analogues examined here were superior to rooperol in preventing the growth of cancer cells, analogues containing phenol or methylenedioxyphenyl replacements for one or both catechol rings were nearly as effective as rooperol. 
    more » « less
  2. Abstract

    Muscle stem cells (MuSCs) experience age-associated declines in number and function, accompanied by mitochondrial electron transport chain (ETC) dysfunction and increased reactive oxygen species (ROS). The source of these changes, and how MuSCs respond to mitochondrial dysfunction, are unknown. We report here that in response to mitochondrial ROS, murine MuSCs directly fuse with neighboring myofibers; this phenomenon removes ETC-dysfunctional MuSCs from the stem cell compartment. MuSC–myofiber fusion is dependent on the induction of Scinderin, which promotes formation of actin-dependent protrusions required for membrane fusion. During aging, we find that the declining MuSC population accumulates mutations in the mitochondrial genome but selects against dysfunctional variants. In the absence of clearance by Scinderin, the decline in MuSC numbers during aging is repressed; however, ETC-dysfunctional MuSCs are retained and can regenerate dysfunctional myofibers. We propose a model in which ETC-dysfunctional MuSCs are removed from the stem cell compartment by fusing with differentiated tissue.

     
    more » « less